organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2*E*)-1-(2-Thienyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one

B. Narayana,^a K. Mustafa,^b B. K. Sarojini,^b H. S. Yathirajan^c and Michael Bolte^d*

^aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, ^bDepartment of Studies in Chemistry, P. A. College of Engineering, Mangalore University, Mangalagangotri 574 193, India, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Received 18 October 2007; accepted 19 October 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.032; wR factor = 0.088; data-to-parameter ratio = 23.0.

The geometric parameters of the title compound, $C_{13}H_7Cl_3OS$, are in the usual ranges. The molecule is almost planar (r.m.s. deviation of all non-H atoms 0.193 Å). The dihedral angle between the two aromatic rings is 14.41 (7)°. The C=C double bond is *trans* configured. The bond between the carbonyl bond and the thienyl ring is in an eclipsed conformation. The crystal packing is stabilized by a weak C-H···O hydrogen bond.

Related literature

For related literature, see: Achanta *et al.* (2006); Anuradha *et al.* (2006); Binder *et al.* (1985); Daikonya *et al.* (2004); Gao & Ng (2006); Han *et al.* (2006); Hsu *et al.* (2006); Khatib *et al.* (2005); Kiat *et al.* (2006); Kim, Choi *et al.* (2006); Kim, Kim *et al.* (2006); Sarojini *et al.* (2007); Wirasathien *et al.* (2006); Yathirajan *et al.* (2007); Yathirajan, Ashalatha *et al.* (2006); Yathirajan, Narayana *et al.* (2006).

a = 16.7102 (11) Å

b = 7.5130 (4) Å

c = 10.8805 (8) Å

Experimental

Crystal data $C_{13}H_7Cl_3OS$ $M_r = 317.60$ Monoclinic, $P2_1/c$ $\beta = 104.395 (5)^{\circ}$ $V = 1323.09 (15) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Stoe IPDSII two-circle	20538 measured reflections
diffractometer	3764 independent reflections
Absorption correction: multi-scan	3276 reflections with $I > 2\sigma(I)$
(MULABS; Spek, 2003; Blessing,	$R_{\rm int} = 0.037$
1995)	int
$T_{\min} = 0.783, T_{\max} = 0.858$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ 164 parameters $wR(F^2) = 0.088$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.37$ e Å⁻³3764 reflections $\Delta \rho_{min} = -0.40$ e Å⁻³

 $\mu = 0.83 \text{ mm}^{-1}$

T = 173 (2) K

 $0.31 \times 0.25 \times 0.19 \text{ mm}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C16-H16\cdots O1^{i}$	0.95	2.45	3.3948 (17)	174
Symmetry code: (i) x.	$-v + \frac{3}{2}z - \frac{1}{2}z$			

Symmetry code: (1) $x, -y + \frac{z}{2}, z - \frac{z}{2}$.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

BN thanks Mangalore University for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2441).

References

- Achanta, G., Modzelewska, A., Feng, L., Khan, S. R. & Huang, P. (2006). Mol. Pharmacol. 70, 426–433.
- Anuradha, V., Srinivas, P. V., Ranga Rao, R., Manjulatha, K., Purohit, M. G. & Madhusudana Rao, J. (2006). *Bioorg. Med. Chem.* 14, 6820–6826.
- Binder, D., Neo, C. R., Holzer, W. & Resen, W. B. (1985). Arch. Pharm. (Weinheim), 318, 48–59.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Daikonya, A., Katsuki, S. & Kitanaka, S. (2004). *Chem. Pharm. Bull. (Tokyo)*, **52**, 1326–1329.
- Gao, S. & Ng, S. W. (2006). Acta Cryst. E62, o3610-o3611.
- Han, A. R., Kang, Y. J., Windono, T., Lee, S. K. & Seo, E. K. (2006). J. Nat. Prod. 69, 719–721.
- Hsu, Y. L., Kuo, P. L., Tzeng, W. S. & Lin, C. C. (2006). Food Chem. Toxicol. 44, 704–713.
- Khatib, S., Nerya, O., Musa, R., Shmuel, M., Tamir, S. & Vaya, J. (2005). Bioorg. Med. Chem. 13, 433–441.
- Kiat, T. S., Pippen, R., Yusof, R., Ibrahim, H., Khalid, N. & Rahman, N. A. (2006). *Bioorg. Med. Chem. Lett.* 16, 3337–3340.
- Kim, D. C., Choi, S. Y., Kim, S. H., Yun, B. S., Yoo, I. D., Reddy, N. R., Yoon, H. S. & Kim, K. T. (2006). *Mol. Pharmacol.* **70**, 493–500.
- Kim, D. Y., Kim, K. H., Kim, N. D., Lee, K. Y., Han, C. K., Yoon, J. H., Moon, S. K., Lee, S. S. & Seong, B. L. (2006). J. Med. Chem. 49, 5664–5670.
- Sarojini, B. K., Narayana, B., Vijesh, A. M., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, 03656.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1991). *SHELXTL-Plus*. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Spek, A. L. (2003). J. Appl. Cryst. **30**, 7–13. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Wirasathien, L., Pengsuparp, T., Moriyasu, M., Kawanishi, K. & Suttisri, R. (2006). Arch. Pharm. Res. 29, 497–502.
- Yathirajan, H. S., Ashalatha, B., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, 04551–04553.
 Yothiraing, H. S., Bindya, S., Mithun, A., Narayana, B. & Balta, M. (2007).
- Yathirajan, H. S., Bindya, S., Mithun, A., Narayana, B. & Bolte, M. (2007). *Acta Cryst.* E63, o61–o62.
- Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, 05010–05012.

supplementary materials

Acta Cryst. (2007). E63, 04422-04423 [doi:10.1107/S1600536807051768]

(2E)-1-(2-Thienyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one

B. Narayana, K. Mustafa, B. K. Sarojini, H. S. Yathirajan and M. Bolte

Comment

Chalcones, 1,3-diphenyl-1-propan-3-one derivatives, have a wide range of biological properties, including anticancer (Achanta *et al.*, 2006; Kim, Choi *et al.*, 2006), antiproliferative (Hsu *et al.*, 2006), anti malarial (Wirasathien *et al.*, 2006), anti inflammatory (Anuradha *et al.*, 2006), anti-allergic (Daikonya *et al.*, 2004) and antagonist (Kim, Kim *et al.*, 2006). Chalcones exhibit inhibitory activity against nitric oxide production (Han *et al.*, 2006), dengue 2 virus NS3 protease (Ki-at *et al.*, 2006) and tyrosinase (Khatib *et al.*, 2005). Some chalcone derivatives exhibit nonlinear optical properties (Gao & Ng, 2006). Thiophene analogues of antiviral chalcones have been studied (Binder *et al.*, 1985). The crystal structures of (2E)-1-(3-bromo-2-thienyl)-3-(4-chlorophenyl)prop-2-en-1-one (Yathirajan, Ashalatha *et al.*, 2006), (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxy-2,3,6-trimethylphenyl)prop-2-en-1-one (Yathirajan, Narayana *et al.*, 2006), (2E)-1-(3-methyl-2-thienyl)-3-(3-nitrophenyl)prop-2-en-1-one (Sarojini *et al.*, 2007) and (2E)-1-(3-methyl-2-thienyl)-3-(3-nitrophenyl)prop-2-en-1-one (Sarojini

Geometric parameters of the title compound are in the usual ranges. The molecule is almost planar (r.m.s. deviation of all non-H atoms 0.193 Å). The C–C double bond is *trans* configured. The bond between the carbonyl bond and the thienyl ring is in an eclipsed conformation. The crystal packing is stabilized by a weak C—H···O hydrogen bond.

Experimental

The title compound was prepared by the Claisen-Schmidt condensation of equimolar quantities of 1-(2-thienyl)ethanone (1.26 g, 0.01 mol) and 2,3,5-trichlorobenzaldehyde (2.09 g, 0.01 mol) in ethanol (25 ml), in the presence of sodium hydroxide (8 ml, 10%) (see reaction scheme). The product was recrystallized from ethyl acetate by slow evaporation [m.p.: 378 K]. Analysis for $C_{13}H_7Cl_3OS$: Found (Calculated) C 49.10 (49.16), H 2.19 (2.22), S 10.02% (10.10%).

Refinement

All H atoms were found in a difference map, but geometrically positioned and refined with fixed individual displacement parameters [U(H) = 1.2 $U_{eq}(C)$] using a riding model with C—H = 0.95 Å.

Figures

Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level.

Fig. 2. The formation of the title compound.

(2E)-1-(2-Thienyl)-3-(2,3,5-trichlorophenyl)prop-2-en-1-one

Crystal data C13H7Cl3OS $F_{000} = 640$ $D_{\rm x} = 1.594 {\rm Mg m}^{-3}$ $M_r = 317.60$ Mo Kα radiation Monoclinic, $P2_1/c$ $\lambda \,{=}\, 0.71073 ~\text{\AA}$ Hall symbol: -P 2ybc Cell parameters from 21250 reflections $\theta = 3.8 - 29.8^{\circ}$ *a* = 16.7102 (11) Å *b* = 7.5130 (4) Å $\mu = 0.83 \text{ mm}^{-1}$ c = 10.8805 (8) Å T = 173 (2) K $\beta = 104.395 (5)^{\circ}$ Block, colourless $0.31\times0.25\times0.19~mm$ $V = 1323.09 (15) \text{ Å}^3$ Z = 4

Data collection

Stoe IPDSII two-circle diffractometer	3764 independent reflections
Radiation source: fine-focus sealed tube	3276 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.037$
T = 173(2) K	$\theta_{max} = 29.8^{\circ}$
ω scans	$\theta_{\min} = 3.7^{\circ}$
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)	$h = -23 \rightarrow 23$
$T_{\min} = 0.783, T_{\max} = 0.858$	$k = -10 \rightarrow 10$
20538 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.032$	$w = 1/[\sigma^2(F_0^2) + (0.0505P)^2 + 0.3998P]$

	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.088$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
3764 reflections	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
164 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0137 (17)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
C11	0.87602 (2)	0.58544 (6)	0.89280 (3)	0.03789 (11)
C12	1.01174 (2)	0.38496 (6)	0.79526 (4)	0.04403 (12)
C13	0.81790 (3)	0.39170 (6)	0.31918 (4)	0.04020 (12)
S1	0.42317 (2)	0.91675 (6)	0.66226 (4)	0.03423 (11)
01	0.60078 (7)	0.86595 (15)	0.78673 (9)	0.0314 (2)
C1	0.71879 (8)	0.67660 (18)	0.69127 (12)	0.0242 (2)
H1	0.7324	0.7170	0.7767	0.029*
C2	0.64235 (8)	0.71009 (19)	0.62167 (12)	0.0251 (2)
H2	0.6267	0.6743	0.5353	0.030*
C3	0.58164 (8)	0.80322 (17)	0.67877 (12)	0.0231 (2)
C4	0.49649 (8)	0.81260 (17)	0.60132 (12)	0.0223 (2)
C5	0.46220 (8)	0.74799 (18)	0.47791 (12)	0.0242 (2)
Н5	0.4923	0.6856	0.4280	0.029*
C6	0.37602 (9)	0.7891 (2)	0.43787 (15)	0.0338 (3)
H6	0.3421	0.7577	0.3570	0.041*
C7	0.34764 (10)	0.8780 (2)	0.52797 (16)	0.0359 (3)
H7	0.2918	0.9143	0.5169	0.043*
C11	0.78359 (8)	0.58274 (17)	0.64720 (12)	0.0226 (2)
C12	0.85862 (8)	0.53493 (18)	0.73275 (12)	0.0253 (2)
C13	0.91959 (8)	0.44393 (19)	0.69000 (14)	0.0283 (3)
C14	0.90810 (9)	0.39832 (19)	0.56313 (14)	0.0294 (3)
H14	0.9496	0.3364	0.5344	0.035*
C15	0.83386 (8)	0.44621 (19)	0.47927 (13)	0.0264 (3)

supplementary materials

C16	0.77229 (8)	0.53606 (18)	0.51859 (12)	0.0243 (2)
H16	0.7223	0.5663	0.4588	0.029*

Atomic displacement parameters (\AA^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.03548 (19)	0.0486 (2)	0.02455 (17)	0.00456 (15)	-0.00205 (13)	-0.00448 (14)
0.02560 (18)	0.0533 (3)	0.0459 (2)	0.01070 (15)	-0.00474 (15)	-0.00116 (18)
0.0422 (2)	0.0515 (2)	0.02833 (18)	0.01138 (16)	0.01151 (14)	-0.00645 (15)
0.03290 (19)	0.0422 (2)	0.03047 (18)	0.01007 (14)	0.01326 (14)	-0.00051 (14)
0.0322 (5)	0.0395 (6)	0.0224 (4)	0.0022 (4)	0.0068 (4)	-0.0056 (4)
0.0251 (6)	0.0262 (6)	0.0214 (5)	0.0010 (4)	0.0064 (4)	-0.0001 (4)
0.0248 (6)	0.0302 (6)	0.0209 (5)	0.0021 (5)	0.0067 (4)	-0.0010 (5)
0.0252 (6)	0.0243 (6)	0.0207 (5)	0.0012 (4)	0.0075 (4)	0.0020 (4)
0.0243 (6)	0.0223 (6)	0.0223 (5)	0.0029 (4)	0.0093 (4)	0.0019 (4)
0.0206 (5)	0.0308 (6)	0.0208 (5)	0.0025 (4)	0.0045 (4)	-0.0005 (5)
0.0271 (6)	0.0386 (8)	0.0326 (7)	0.0003 (6)	0.0018 (5)	-0.0004 (6)
0.0255 (6)	0.0404 (8)	0.0427 (8)	0.0060 (6)	0.0102 (6)	0.0078 (6)
0.0212 (5)	0.0231 (6)	0.0231 (5)	-0.0008 (4)	0.0049 (4)	0.0018 (4)
0.0233 (6)	0.0264 (6)	0.0242 (6)	-0.0013 (4)	0.0024 (5)	0.0007 (5)
0.0205 (6)	0.0282 (6)	0.0337 (7)	0.0011 (5)	0.0018 (5)	0.0018 (5)
0.0237 (6)	0.0292 (6)	0.0358 (7)	0.0026 (5)	0.0085 (5)	-0.0009 (5)
0.0265 (6)	0.0277 (6)	0.0258 (6)	0.0008 (5)	0.0079 (5)	-0.0011 (5)
0.0226 (5)	0.0268 (6)	0.0232 (5)	0.0017 (4)	0.0054 (4)	0.0015 (5)
	U^{11} 0.03548 (19) 0.02560 (18) 0.0422 (2) 0.03290 (19) 0.0322 (5) 0.0251 (6) 0.0248 (6) 0.0248 (6) 0.0252 (6) 0.0271 (6) 0.0255 (6) 0.0212 (5) 0.0233 (6) 0.0205 (6) 0.0226 (5)	U^{11} U^{22} $0.03548 (19)$ $0.0486 (2)$ $0.02560 (18)$ $0.0533 (3)$ $0.0422 (2)$ $0.0515 (2)$ $0.03290 (19)$ $0.0422 (2)$ $0.0322 (5)$ $0.0395 (6)$ $0.0251 (6)$ $0.0262 (6)$ $0.0248 (6)$ $0.0262 (6)$ $0.0248 (6)$ $0.0243 (6)$ $0.0243 (6)$ $0.0223 (6)$ $0.0243 (6)$ $0.0223 (6)$ $0.0206 (5)$ $0.0308 (6)$ $0.0271 (6)$ $0.0231 (6)$ $0.0255 (6)$ $0.0244 (6)$ $0.0212 (5)$ $0.0231 (6)$ $0.0205 (6)$ $0.0282 (6)$ $0.0237 (6)$ $0.0277 (6)$ $0.0226 (5)$ $0.0268 (6)$	U^{11} U^{22} U^{33} $0.03548 (19)$ $0.0486 (2)$ $0.02455 (17)$ $0.02560 (18)$ $0.0533 (3)$ $0.0459 (2)$ $0.0422 (2)$ $0.0515 (2)$ $0.02833 (18)$ $0.03290 (19)$ $0.0422 (2)$ $0.03047 (18)$ $0.0322 (5)$ $0.0395 (6)$ $0.0224 (4)$ $0.0251 (6)$ $0.0262 (6)$ $0.0214 (5)$ $0.0248 (6)$ $0.0302 (6)$ $0.0209 (5)$ $0.0252 (6)$ $0.0223 (6)$ $0.0207 (5)$ $0.0243 (6)$ $0.0223 (6)$ $0.0223 (5)$ $0.0206 (5)$ $0.0308 (6)$ $0.0208 (5)$ $0.0271 (6)$ $0.0231 (6)$ $0.0242 (6)$ $0.0212 (5)$ $0.0231 (6)$ $0.0242 (6)$ $0.0233 (6)$ $0.0226 (6)$ $0.0337 (7)$ $0.0237 (6)$ $0.0277 (6)$ $0.0258 (6)$ $0.0226 (5)$ $0.0268 (6)$ $0.0232 (5)$	U^{11} U^{22} U^{33} U^{12} 0.03548 (19)0.0486 (2)0.02455 (17)0.00456 (15)0.02560 (18)0.0533 (3)0.0459 (2)0.01070 (15)0.0422 (2)0.0515 (2)0.02833 (18)0.01138 (16)0.03290 (19)0.0422 (2)0.03047 (18)0.01007 (14)0.0322 (5)0.0395 (6)0.0224 (4)0.0022 (4)0.0251 (6)0.0262 (6)0.0214 (5)0.0010 (4)0.0248 (6)0.0302 (6)0.0209 (5)0.0021 (5)0.0252 (6)0.0223 (6)0.0207 (5)0.0012 (4)0.0243 (6)0.0223 (5)0.0025 (4)0.0206 (5)0.0308 (6)0.0208 (5)0.0025 (4)0.0271 (6)0.0386 (8)0.0326 (7)0.0003 (6)0.0212 (5)0.0231 (6)0.0242 (6)-0.0013 (4)0.0205 (6)0.0226 (6)0.0337 (7)0.0011 (5)0.0237 (6)0.0292 (6)0.0358 (7)0.0026 (5)0.0265 (6)0.0277 (6)0.0258 (6)0.0008 (5)0.0226 (5)0.0268 (6)0.0232 (5)0.0017 (4)	U^{11} U^{22} U^{33} U^{12} U^{13} $0.03548(19)$ $0.0486(2)$ $0.02455(17)$ $0.00456(15)$ $-0.00205(13)$ $0.02560(18)$ $0.0533(3)$ $0.0459(2)$ $0.01070(15)$ $-0.00474(15)$ $0.0422(2)$ $0.0515(2)$ $0.02833(18)$ $0.01138(16)$ $0.01151(14)$ $0.03290(19)$ $0.0422(2)$ $0.03047(18)$ $0.01007(14)$ $0.01326(14)$ $0.0322(5)$ $0.0395(6)$ $0.0224(4)$ $0.0022(4)$ $0.0068(4)$ $0.0251(6)$ $0.0262(6)$ $0.0214(5)$ $0.0010(4)$ $0.0067(4)$ $0.0248(6)$ $0.0302(6)$ $0.0209(5)$ $0.0012(4)$ $0.0075(4)$ $0.0243(6)$ $0.0223(5)$ $0.0029(4)$ $0.0093(4)$ $0.0243(6)$ $0.0223(5)$ $0.0025(4)$ $0.0045(4)$ $0.0255(6)$ $0.0308(6)$ $0.0208(5)$ $0.0025(4)$ $0.0045(4)$ $0.0271(6)$ $0.0386(8)$ $0.0326(7)$ $0.0008(4)$ $0.0049(4)$ $0.0233(6)$ $0.0224(6)$ $-0.0013(4)$ $0.0024(5)$ $0.0233(6)$ $0.0224(6)$ $-0.0013(4)$ $0.0024(5)$ $0.0237(6)$ $0.0226(6)$ $0.0337(7)$ $0.0011(5)$ $0.0018(5)$ $0.0255(6)$ $0.0226(6)$ $0.0358(7)$ $0.0026(5)$ $0.0085(5)$ $0.0255(6)$ $0.0277(6)$ $0.0258(6)$ $0.0008(5)$ $0.0079(5)$ $0.0226(5)$ $0.0268(6)$ $0.0232(5)$ $0.0017(4)$ $0.0054(4)$

Geometric parameters (Å, °)

Cl1—C12	1.7348 (14)	C5—C6	1.4308 (19)
Cl2—C13	1.7327 (14)	С5—Н5	0.9500
Cl3—C15	1.7441 (14)	C6—C7	1.365 (2)
S1—C7	1.7016 (18)	С6—Н6	0.9500
S1—C4	1.7196 (13)	С7—Н7	0.9500
O1—C3	1.2318 (16)	C11—C16	1.4090 (18)
C1—C2	1.3370 (18)	C11—C12	1.4096 (17)
C1—C11	1.4691 (18)	C12—C13	1.3990 (19)
C1—H1	0.9500	C13—C14	1.389 (2)
C2—C3	1.4893 (18)	C14—C15	1.3921 (19)
С2—Н2	0.9500	C14—H14	0.9500
C3—C4	1.4641 (18)	C15—C16	1.3844 (18)
C4—C5	1.4087 (17)	C16—H16	0.9500
C7—S1—C4	92.21 (7)	С6—С7—Н7	123.7
C2—C1—C11	125.69 (12)	S1—C7—H7	123.7
C2—C1—H1	117.2	C16-C11-C12	118.04 (12)
C11—C1—H1	117.2	C16—C11—C1	121.06 (11)
C1—C2—C3	120.40 (12)	C12—C11—C1	120.90 (12)
С1—С2—Н2	119.8	C13—C12—C11	120.44 (12)
С3—С2—Н2	119.8	C13—C12—C11	119.11 (10)
O1—C3—C4	121.01 (12)	C11—C12—C11	120.44 (10)

O1—C3—C2	122.36 (12)	C14—C13—C12	121.27 (12)
C4—C3—C2	116.60 (11)	C14—C13—Cl2	118.33 (11)
C5—C4—C3	129.70 (11)	C12—C13—Cl2	120.40 (11)
C5—C4—S1	111.37 (9)	C13—C14—C15	117.92 (13)
C3—C4—S1	118.92 (9)	C13—C14—H14	121.0
C4—C5—C6	110.85 (12)	C15—C14—H14	121.0
С4—С5—Н5	124.6	C16—C15—C14	122.22 (13)
С6—С5—Н5	124.6	C16—C15—Cl3	118.83 (10)
C7—C6—C5	112.95 (13)	C14—C15—Cl3	118.95 (11)
С7—С6—Н6	123.5	C15—C16—C11	120.12 (12)
С5—С6—Н6	123.5	C15—C16—H16	119.9
C6—C7—S1	112.61 (11)	C11—C16—H16	119.9
C11—C1—C2—C3	178.59 (12)	C16-C11-C12-C13	0.05 (19)
C1—C2—C3—O1	6.4 (2)	C1-C11-C12-C13	179.34 (12)
C1—C2—C3—C4	-171.87 (12)	C16-C11-C12-Cl1	-179.07 (10)
O1—C3—C4—C5	-179.18 (14)	C1-C11-C12-Cl1	0.22 (18)
C2—C3—C4—C5	-0.9 (2)	C11—C12—C13—C14	0.0 (2)
O1—C3—C4—S1	1.18 (18)	Cl1—C12—C13—C14	179.10 (11)
C2—C3—C4—S1	179.47 (9)	C11—C12—C13—Cl2	-179.92 (10)
C7—S1—C4—C5	-0.21 (11)	Cl1—C12—C13—Cl2	-0.79 (17)
C7—S1—C4—C3	179.49 (11)	C12-C13-C14-C15	0.1 (2)
C3—C4—C5—C6	-179.12 (13)	Cl2—C13—C14—C15	179.98 (11)
S1—C4—C5—C6	0.54 (15)	C13-C14-C15-C16	-0.2 (2)
C4—C5—C6—C7	-0.70 (19)	C13—C14—C15—Cl3	179.67 (11)
C5—C6—C7—S1	0.55 (19)	C14-C15-C16-C11	0.2 (2)
C4—S1—C7—C6	-0.19 (13)	Cl3—C15—C16—C11	-179.66 (10)
C2-C1-C11-C16	7.3 (2)	C12-C11-C16-C15	-0.13 (19)
C2-C1-C11-C12	-171.96 (13)	C1—C11—C16—C15	-179.42 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C16—H16···O1 ⁱ	0.95	2.45	3.3948 (17)	174
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$.				

Fig. 1

Fig. 2

